ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены). Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF. Два квадрата и равнобедренный треугольник расположены так, как показано на рисунке (вершина K большого квадрата лежит на стороне треугольника). Докажите, что точки A, B и C лежат на одной прямой. |
Страница: 1 2 >> [Всего задач: 6]
В разноцветной семейке было поровну белых, синих и полосатых детей-осьминожков. Когда несколько синих осьминожков стали полосатыми, папа решил посчитать детей. Синих и белых вместе взятых оказалось 10, зато белых и полосатых вместе взятых – 18. Сколько детей в разноцветной семейке?
Использовав каждую из цифр от 0 до 9 ровно по разу, запишите 5 ненулевых чисел так, чтобы каждое делилось на предыдущее.
Все клетки верхнего ряда квадрата 14× 14 заполнены водой, а в одной клетке лежит мешок с песком (см. рис.). За один ход Вася может положить мешки с песком в любые 3 не занятые водой клетки, после чего вода заполняет каждую из тех клеток, которые граничат с водой (по стороне), если в этой клетке нет мешка с песком. Ходы продолжаются, пока вода может заполнять новые клетки. Как действовать Васе, чтобы в итоге вода заполнила как можно меньше клеток?
Два квадрата и равнобедренный треугольник расположены так, как показано на рисунке (вершина K большого квадрата лежит на стороне треугольника). Докажите, что точки A, B и C лежат на одной прямой.
Фигурки из четырёх клеток называются тет- рамино. Они бывают пяти видов (см. рис.). Существует ли такая фигура, что при любом выборе вида тетрамино эту фигуру можно составить, используя тетраминошки только выбранного вида? (Переворачивать тетраминошки можно.)
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке