Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 25 задач
Версия для печати
Убрать все задачи

Доказать: произведение
  а) двух нечётных чисел нечётно;
  б) чётного числа с любым целым числом чётно.

Вниз   Решение


Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?

ВверхВниз   Решение


Братья Петя и Вася решили снять смешной ролик и выложить его в интернет. Сначала они сняли, как каждый из них идёт из дома в школу — Вася шёл 8 минут, а Петя шёл 5 минут. Потом пришли домой и сели за компьютер монтировать видео: они запустили одновременно Васино видео с начала и Петино видео с конца (в обратном направлении); в момент, когда на обоих роликах братья оказались в одной и той же точке пути, они склеили Петино видео с Васиным. Получился ролик, на котором Вася идёт из дома в школу, а потом в какой-то момент вдруг превращается в Петю и идёт домой задом наперёд. А какой длительности получился ролик?

ВверхВниз   Решение


Можно ли правильную треугольную призму разрезать на две равные пирамиды?

ВверхВниз   Решение


Занумеруем все простые числа в порядке возрастания:  p1 = 2,  p2 = 3,  ... .
Может ли среднее арифметическое     при каком-нибудь  n ≥ 2  быть простым числом?

ВверхВниз   Решение


Автор: Mudgal A.

Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°.

ВверхВниз   Решение


В треугольнике ABC  ∠A = 45°,  BH – высота, точка K лежит на стороне AC, причём  BC = CK.
Докажите, что центр описанной окружности треугольника ABK совпадает с центром вневписанной окружности треугольника BCH.

ВверхВниз   Решение


Автор: Фольклор

Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел.

ВверхВниз   Решение


Даны натуральные числа a и b, причём  a < 1000.  Докажите, что если a21 делится на b10, то a² делится на b.

ВверхВниз   Решение


Автор: Кноп К.А.

Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.

ВверхВниз   Решение


Автор: Мухин Д.Г.

В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности.

ВверхВниз   Решение


В трапеции ABCD  BC < AD,  AB = CD,  K – середина AD, M – середина CD, CH – высота.
Докажите, что прямые AM, CK и BH пересекаются в одной точке.

ВверхВниз   Решение


Незнайка выписал по кругу 11 натуральных чисел. Для каждых двух соседних чисел он посчитал их разность (из большего вычел меньшее). В результате среди найденных разностей оказалось четыре единицы, четыре двойки и три тройки. Докажите, что Незнайка где-то допустил ошибку.

ВверхВниз   Решение


Биссектрисы AA1 и CC1 треугольника ABC пересекаются в точке I. Описанные окружности треугольников AIC1 и CIA1 повторно пересекают дуги AC и BC (не содержащие точек B и A соответственно) описанной окружности треугольника ABC в точках C2 и A2 соответственно. Докажите, что прямые A1A2 и C1C2 пересекаются на описанной окружности треугольника ABC.

ВверхВниз   Решение


Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?

ВверхВниз   Решение


Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.

ВверхВниз   Решение


Пять друзей подошли к реке и обнаружили на берегу лодку, в которой могут поместиться все пятеро. Они решили покататься на лодке. Каждый раз с одного берега на другой переправляется компания из одного или нескольких человек. Друзья хотят организовать катание так, чтобы каждая возможная компания переправилась ровно один раз. Получится ли у них это сделать?

ВверхВниз   Решение


Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

ВверхВниз   Решение


Автор: Нилов Ф.

Внутри угла AOD проведены лучи OB и OC, причём  ∠AOB = ∠COD.  В углы AOB и COD вписаны непересекающиеся окружности.
Докажите, что точка пересечения общих внутренних касательных к этим окружностям лежит на биссектрисе угла AOD.

ВверхВниз   Решение


Будем называть флажком пятиугольник, вершины которого — вершины некоторого квадрата и его центр. Разрежьте фигуру ниже справа на флажки (не обязательно одинаковые).

ВверхВниз   Решение


Дан правильный треугольник ABC, площадь которого равна 1, и точка P на его описанной окружности. Прямые AP, BP, CP пересекают соответственно прямые BC, CA, AB в точках A', B', C'. Найдите площадь треугольника A'B'C'.

ВверхВниз   Решение


Директор завода, рассматривая список телефонных номеров и фамилий своих сотрудников, заметил определённую взаимосвязь между фамилиями и номерами телефонов. Вот некоторые фамилии и номера телефонов из списка:
Ачинский8111
Бутенко7216
Галич5425
Лапина6131
Мартьянов9143
Ромидзе7186
Какой номер телефона у сотрудника по фамилии Огнев?

ВверхВниз   Решение


Докажите, что уравнение  3x² + 2 = y²  нельзя решить в целых числах.

ВверхВниз   Решение


Замените $\ast$ одинаковыми числами так, чтобы равенство стало верным: $$\frac{20}{\ast} - \frac{\ast}{15} = \frac{20}{15}$$

ВверхВниз   Решение


Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 66402  (#1)

Темы:   [ Параллелограммы: частные случаи (прочее) ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Два параллелограмма расположены так, как показано на рисунке. Докажите, что диагональ одного параллелограмма проходит через точку пересечения диагоналей другого.

Прислать комментарий     Решение

Задача 66403  (#2)

Темы:   [ Биссектриса угла ]
[ Вневписанные окружности ]
[ Средняя линия трапеции ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD.
Прислать комментарий     Решение


Задача 66404  (#3)

Темы:   [ Прямые, касающиеся окружностей ]
[ Вневписанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.
Прислать комментарий     Решение


Задача 66405  (#4)

Темы:   [ Вписанный угол (построения) ]
[ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Автор: Кноп К.А.

Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.
Прислать комментарий     Решение


Задача 66406  (#5)

Темы:   [ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

Фиксированы окружность, описанная около остроугольного треугольника ABC, и вершина C. Ортоцентр H движется по окружности с центром в точке C. Найдите ГМТ середин отрезков, соединяющих основания высот, проведенных из вершин A и B.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .