Processing math: 35%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,  

Вниз   Решение


Остап Бендер организовал в городе Фуксе раздачу слонов населению. На раздачу явились 28 членов профсоюза и 37 не членов, причём Остап раздавал слонов поровну всем членам профсоюза и поровну – не членам. Оказалось, что существует лишь один способ такой раздачи (так, чтобы раздать всех слонов). Какое наибольшее число слонов могло быть у О. Бендера? (Предполагается, что каждому из пришедших достался хотя бы один слон.)

ВверхВниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


В треугольнике ABC точка M – середина стороны BC, точка E лежит внутри стороны AC,  BE.  Докажите, что треугольник ABC тупоугольный.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 66721

Темы:   [ Средняя линия треугольника ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Неравенство треугольника (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

В треугольнике ABC точка M – середина стороны BC, точка E лежит внутри стороны AC,  BE \geqslant 2AM.  Докажите, что треугольник ABC тупоугольный.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .