У царя есть 7 мешков с золотыми монетами, в каждом по 100 монет. Царь помнит, что в одном мешке все монеты весят 7 г, во втором 8 г, в третьем 9 г, в четвёртом 10 г, в пятом 11 г, в шестом 12 г, в седьмом 13 г, но не помнит, где какие.
Царь сообщил это придворному мудрецу и указал на один из мешков. Мудрец
может вынимать из этого и из других мешков любое количество монет, но на вид они все одинаковы. Однако у мудреца есть большие двухчашечные весы без гирь (они точно покажут, равны ли веса на чашках, а если нет, то какая чашка тяжелее). Может ли мудрец определить, какие монеты в указанном мешке, сделав не более двух взвешиваний?
Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.
Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.
Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:
Уровень воды (см)
5
15
25
35
45
Количество островов
2
5
2
5
0
В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.
Фигура «скрипач» бьёт клетку слева по стороне (локтем) и справа вверху по диагонали (смычком), если он правша, и, наоборот, правую клетку по стороне и левую верхнюю по диагонали, если левша (все скрипачи сидят лицом к нам). Посадите как
можно больше «скрипачей» в «оркестр» 8×8 клеток, чтобы они не били друг друга. (Вы можете использовать любое количество как правшей, так и левшей.)
В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?
У царя есть 7 мешков с золотыми монетами, в каждом по 100 монет. Царь помнит, что в одном мешке все монеты весят 7 г, во втором 8 г, в третьем 9 г, в четвёртом 10 г, в пятом 11 г, в шестом 12 г, в седьмом 13 г, но не помнит, где какие.
Царь сообщил это придворному мудрецу и указал на один из мешков. Мудрец
может вынимать из этого и из других мешков любое количество монет, но на вид они все одинаковы. Однако у мудреца есть большие двухчашечные весы без гирь (они точно покажут, равны ли веса на чашках, а если нет, то какая чашка тяжелее). Может ли мудрец определить, какие монеты в указанном мешке, сделав не более двух взвешиваний?