ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

  а) Выбраны 6 различных цветов; требуется раскрасить 6 граней куба, каждую в особый цвет из числа избранных. Сколькими геометрически различными способами можно это сделать? Геометрически различными называются две такие расцветки, которые нельзя совместить одну с другой при помощи вращений куба вокруг его центра.
  б) Решить ту же задачу для случая раскраски граней додекаэдра в 12 различных цветов.

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 32069  (#11)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Выход в пространство ]
Сложность: 3
Классы: 5,6,7,8,9

Отметьте несколько точек и несколько прямых так, чтобы на каждой прямой лежало ровно три отмеченные точки и через каждую точку проходило ровно три отмеченные прямые.

Прислать комментарий     Решение


Задача 32070  (#12)

Темы:   [ Обратный ход ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 7,8,9

Точку внутри квадрата соединили с вершинами – получились четыре треугольника, один из которых равнобедренный с углами при основании (стороне квадрата) 15°. Докажите, что противоположный ему треугольник правильный.

Прислать комментарий     Решение

Задача 32071  (#13)

Темы:   [ Шестиугольники ]
[ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

a1, a2, a3, a4, a5, a6 – последовательные стороны шестиугольника, все углы которого равны. Докажите, что  a1a4 = a3a6 = a5a2.

Прислать комментарий     Решение

Задача 32072  (#14)

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9

"Крокодилом" называется фигура, ход которой заключается в прыжке на клетку, в которую можно попасть сдвигом на одну клетку по вертикали или горизонтали, а затем на N клеток в перпендикулярном направлении (при  N = 2  "крокодил" – это шахматный конь).
При каких N "крокодил" может пройти с каждой клетки бесконечной шахматной доски на любую другую?

Прислать комментарий     Решение

Задача 76432  (#15)

Темы:   [ Комбинаторика орбит ]
[ Раскраски ]
[ Правило произведения ]
[ Правильные многогранники (прочее) ]
[ Куб ]
Сложность: 3+
Классы: 10,11

  а) Выбраны 6 различных цветов; требуется раскрасить 6 граней куба, каждую в особый цвет из числа избранных. Сколькими геометрически различными способами можно это сделать? Геометрически различными называются две такие расцветки, которые нельзя совместить одну с другой при помощи вращений куба вокруг его центра.
  б) Решить ту же задачу для случая раскраски граней додекаэдра в 12 различных цветов.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .