ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В шахматном турнире участвовали два ученика 7 класса и некоторое число учеников 8 класса. Два семиклассника набрали 8 очков, а каждый из восьмиклассников набрал одно и то же число очков. Сколько восьмиклассников участвовало в турнире? (Каждый из участников турнира играет с каждым из остальных по одной партии. За выигрыш даётся 1 очко, за ничью – ½ очка, за проигрыш – 0 очков.)

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 76527  (#1)

Темы:   [ Турниры и турнирные таблицы ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

В шахматном турнире участвовали два ученика 7 класса и некоторое число учеников 8 класса. Два семиклассника набрали 8 очков, а каждый из восьмиклассников набрал одно и то же число очков. Сколько восьмиклассников участвовало в турнире? (Каждый из участников турнира играет с каждым из остальных по одной партии. За выигрыш даётся 1 очко, за ничью – ½ очка, за проигрыш – 0 очков.)

Прислать комментарий     Решение

Задача 76528  (#2)

Тема:   [ Разложение на множители ]
Сложность: 4
Классы: 8,9

Докажите, что выражение  x5 + 3x4y – 5x³y2 – 15x²y³ + 4xy4 + 12y5  не равно 33 ни при каких целых значениях x и y.

Прислать комментарий     Решение

Задача 76529  (#3)

Тема:   [ Угол (экстремальные свойства) ]
Сложность: 3+
Классы: 8,9

На сторонах угла AOB от вершины O отложены отрезки OA и OB, причем OA > OB. На отрезке OA взята точка M, на продолжении отрезка OB — точка N так, что AM = BN = x. Найти значение x, при котором отрезок MN имеет наименьшую длину.
Прислать комментарий     Решение


Задача 76530  (#4)

Тема:   [ Геометрические неравенства (прочее) ]
Сложность: 6
Классы: 8,9

Из тридцати пунктов A1, A2, ..., A30, расположенных на прямой MN на равных расстояниях друг от друга, выходят тридцать прямых дорог. Эти дороги располагаются по одну сторону от прямой MN и образуют с MN следующие углы:

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$\displaystyle \alpha$ 60o 30o 15o 20o 155o 45o 10o 35o 140o 50o 125o 65o 85o 86o 80o
  16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
$\displaystyle \alpha$ 75o 78o 115o 95o 25o 28o 158o 30o 25o 5o 15o 160o 170o 20o 158o
                               

Из всех тридцати пунктов выезжают одновременно тридцать автомобилей, едущих, никуда не сворачивая, по этим дорогам с одинаковой скоростью. На каждом из перекрёстков установлено по шлагбауму. Как только первая по времени машина проезжает перекрёсток, шлагбаум закрывается и преграждает путь всем следующим машинам, попадающим на этот перекрёсток. Какие из машин проедут все перекрёстки на своём пути, а какие застрянут?
Прислать комментарий     Решение

Задача 76531  (#5)

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Проективная плоскость с конечным числом точек ]
Сложность: 3+
Классы: 8,9

Автобусная сеть города устроена следующим образом:
  1) с каждой остановки на любую другую остановку можно попасть без пересадки;
  2) для каждой пары маршрутов найдётся, и притом единственная, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
  3) на каждом маршруте ровно три остановки.
Сколько автобусных маршрутов в городе? (Известно, что их больше одного.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .