Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что  HaHb || LaLb.  Верно ли, что  AC = BC?

Вниз   Решение


Докажите, что равенство   =   равносильно тому, что десятичное представление дроби 1/m имеет вид  0,(a1a2...an).

ВверхВниз   Решение


Из пункта A в другие можно попасть двумя способами: 1) выйти сразу и идти пешком; 2) вызвать машину и, подождав ее определённое время, ехать на ней. В каждом случае используется способ передвижения, требующий меньшего времени. При этом

Скорости пешехода и машины, а также время ожидания машины, принимаются неизменными. Сколько понадобится времени для достижения пункта, отстоящего от A на 6 км?

ВверхВниз   Решение


Даны две треугольные пирамиды ABCD и A'BCD с общим основанием BCD, причем точка A' лежит внутри пирамиды ABCD. Доказать, что сумма плоских углов при вершине A' пирамиды A'BCD больше суммы плоских углов при вершине A пирамиды ABCD.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 77870

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9,10

Если число     – целое, то и число     – целое. Доказать.

Прислать комментарий     Решение

Задача 77871

Тема:   [ Логарифмические неравенства ]
Сложность: 4
Классы: 10,11

Доказать без помощи таблиц, что

$\displaystyle {\frac{1}{\log_2\pi}}$ + $\displaystyle {\frac{1}{\log_5\pi}}$ > 2.

Прислать комментарий     Решение

Задача 77872

Темы:   [ Неравенства с трехгранными углами ]
[ Пирамида (прочее) ]
[ Неравенства с углами ]
Сложность: 4
Классы: 10,11

Даны две треугольные пирамиды ABCD и A'BCD с общим основанием BCD, причем точка A' лежит внутри пирамиды ABCD. Доказать, что сумма плоских углов при вершине A' пирамиды A'BCD больше суммы плоских углов при вершине A пирамиды ABCD.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .