|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая, проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам. Доказать, что в трапеции сумма углов при меньшем основании больше, чем при большем. |
Страница: 1 [Всего задач: 4]
Каково минимальное целое число вида 111...11, делящееся на 333...33 (100 троек)?
Разделить отрезок пополам с помощью угольника. (С помощью угольника можно проводить прямые и восстанавливать перпендикуляры, опускать перпендикуляры нельзя.)
Докажите, что при любом натуральном n число n² + 8n + 15 не делится на n + 4.
Страница: 1 [Всего задач: 4] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|