Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Доказать, что число всех цифр в последовательности 1, 2, 3,..., 10k равно числу всех нулей в последовательности 1, 2, 3,..., 10k + 1.

Вниз   Решение


Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?

ВверхВниз   Решение


Существует ли такое натуральное x, что  x² + x + 1  делится на 1985?

ВверхВниз   Решение


Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

ВверхВниз   Решение


Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?

ВверхВниз   Решение


В каком из выражений:  (1 – x² + x³)1000,   (1 + x² – x³)1000  после раскрытия скобок и приведения подобных членов больший коэффициент при x20?

ВверхВниз   Решение


Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

ВверхВниз   Решение


На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник ромбом.

ВверхВниз   Решение


Существует ли плоский четырехугольник, у которого тангенсы всех внутренних углов равны?

ВверхВниз   Решение


Дан треугольник ABC. Окружность радиуса R касается прямых AB и BC в точках A и C и пересекает медиану BD в точке L, причём  BL = 5/9 BD.
Найдите площадь треугольника.

ВверхВниз   Решение


Найти все действительные решения системы
   x³ + y³ = 1,
   x4 + y4 = 1.

ВверхВниз   Решение


Трёхчлен  ax² + bx + c  при всех целых x является точным квадратом. Доказать, что тогда  ax² + bx + c = (dx + e)².

ВверхВниз   Решение


Дан $ \Delta$ABC и точка D внутри него, причем AC - DA > 1 и BC - BD > 1. Берётся произвольная точка E внутри отрезка AB. Доказать, что EC - ED > 1.

ВверхВниз   Решение


Сумму цифр числа a обозначим через S(a). Доказать, что если  S(a) = S(2a),  то число a делится на 9.

ВверхВниз   Решение


Дан треугольник A0B0C0. На его сторонах A0B0, B0C0, C0A0 взяты точки C1, A1, B1 соответственно. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2, и вообще, на сторонах AnBn, BnCn, CnAn, треугольника AnBnCn взяты точки Cn + 1, An + 1, Bn + 1. Известно, что

$\displaystyle {\frac{A_0B_1}{B_1C_0}}$ = $\displaystyle {\frac{B_0C_1}{C_1A_0}}$ = $\displaystyle {\frac{C_0A_1}{A_1B_0}}$ = k,$\displaystyle {\frac{A_1B_2}{B_2C_1}}$ = $\displaystyle {\frac{B_1C_2}{C_2A_1}}$ = $\displaystyle {\frac{C_1A_2}{A_2B_1}}$ = $\displaystyle {\frac{1}{k^2}}$
и вообще,

Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n.

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается сторон CA и AB в точках B1 и C1, а вневписанная окружность касается продолжения этих сторон в точках B2 и C2. Докажите, что середина стороны BC равноудалена от прямых B1C1 и B2C2.

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.

ВверхВниз   Решение


Решить в целых числах уравнение  x³ – 2y³ – 4z³ = 0.

ВверхВниз   Решение


Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78024  (#1)

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Числа 1, 2, ..., 49 расположены в квадратную таблицу

Произвольное число из таблицы выписывается, после чего из таблицы вычёркивается строка и столбец, содержащие это число. То же самое проделывается с оставшейся таблицей и т.д., всего 7 раз. Найти сумму выписанных чисел.

Прислать комментарий     Решение

Задача 78025  (#2)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 8,9

Дан прямоугольный треугольник ABC. Из вершины B прямого угла проведена медиана BD. Пусть K – точка касания стороны AD треугольника ABD с вписанной окружностью этого треугольника. Найти острые углы треугольника ABC, если K делит AD пополам.

Прислать комментарий     Решение

Задача 78026  (#3)

Темы:   [ Поворот помогает решить задачу ]
[ ГМТ и вписанный угол ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 8,9

Дан равносторонний $ \Delta$ABC. На сторонах AB и BC взяты точки D и E так, что AE = CD. Найти геометрическое место точек пересечения отрезков AE и CD.
Прислать комментарий     Решение


Задача 30606  (#4)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Существует ли такое натуральное n, что  n² + n + 1  делится на 1955?

Прислать комментарий     Решение

Задача 78028  (#5)

Темы:   [ Разные задачи на разрезания ]
[ Простые числа и их свойства ]
Сложность: 2+
Классы: 7,8,9

Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .