ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов. Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел ac + bd, ae + bf, ag + bh, ce + df, cg + dh, eg + fh неотрицательно. Известно, что ax4 + bx³ + cx² + dx + e, где a, b, c, d, e – данные целые числа, при любом целом x делится на 7. Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать, что если он обратно также поедет в трамвае, то он сможет уплатить за проезд без сдачи. (Примечание. Проезд в трамвае стоил 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.) На листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом. В парламенте 30 депутатов. Каждые два из них либо дружат, либо враждуют, причём каждый дружит ровно с шестью другими. Каждые три депутата образуют комиссию. Найдите общее число комиссий, в которых все три члена попарно дружат или все трое попарно враждуют. Для любых чисел a1 и a2, удовлетворяющих условиям a1 ≥ 0, a2 ≥ 0, a1 + a2 = 1, можно найти такие числа b1 и b2, что b1 ≥ 0, b2 ≥ 0, b1 + b2 = 1, Сколькими способами можно составить комиссию из трёх человек, выбирая её членов из четырёх супружеских пар, но так, чтобы члены одной семьи не входили в комиссию одновременно? Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами (p, q). При каких целых n число 20n + 16n – 3n – 1 делится на 323? На плоскости даны точки A и B. Построить такой квадрат, чтобы точки A и B лежали на его границе и сумма расстояний от точки A до вершин квадрата была наименьшей. Какое наименьшее натуральное число не является делителем 50!? 30 человек голосуют по пяти предложениям. Сколькими способами могут распределиться голоса, если каждый голосует только за одно предложение и учитывается лишь количество голосов, поданных за каждое предложение? Решить уравнение x³ – [x] = 3. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]
Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать, что если он обратно также поедет в трамвае, то он сможет уплатить за проезд без сдачи. (Примечание. Проезд в трамвае стоил 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)
Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Известно, что ax4 + bx³ + cx² + dx + e, где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Решить уравнение x³ – [x] = 3.
При каких целых n число 20n + 16n – 3n – 1 делится на 323?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке