Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Расположить на прямой систему отрезков длины 1, не имеющих общих концов и общих точек так, чтобы бесконечная арифметическая прогрессия с любой разностью и любым начальным членом имела общую точку с некоторым отрезком системы.

Вниз   Решение


Как надо расположить числа  1, 2, ..., 2n  в последовательности  a1, a2, ..., a2n,  чтобы сумма  |a1a2| + |a2a3| + ... + |a2n–1a2n| + |a2na1|  была наибольшей?

ВверхВниз   Решение


Имеется 1955 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку?

ВверхВниз   Решение


Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.

ВверхВниз   Решение


Правильный треугольник, одна сторона которого отмечена, отражается симметрично относительно одной из своих сторон. Полученный треугольник в свою очередь отражается и т.д., пока на некотором шаге треугольник не придёт в первоначальное положение. Доказать, что при этом отмеченная сторона также займёт исходное положение.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 78273  (#1)

Тема:   [ Вписанные и описанные окружности ]
Сложность: 3
Классы: 8,9

Дана прямая l, перпендикулярная отрезку AB и пересекающая его. Для любой точки M прямой l строится такая точка N, что $ \angle$NAB = 2$ \angle$MAB; $ \angle$NBA = 2$ \angle$MBA. Доказать, что абсолютная величина разности AN - BN не зависит от выбора точки M на прямой l.
Прислать комментарий     Решение


Задача 78274  (#2)

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Правильный треугольник, одна сторона которого отмечена, отражается симметрично относительно одной из своих сторон. Полученный треугольник в свою очередь отражается и т.д., пока на некотором шаге треугольник не придёт в первоначальное положение. Доказать, что при этом отмеченная сторона также займёт исходное положение.
Прислать комментарий     Решение


Задача 78276  (#4)

Темы:   [ Количество и сумма делителей числа ]
[ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 8,9

Сумму цифр числа a обозначим через S(a). Доказать, что если  S(a) = S(2a),  то число a делится на 9.

Прислать комментарий     Решение

Задача 78277  (#5)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9

Даны n карточек; на обеих сторонах каждой карточки написано по одному из чисел 1, 2,..., n, причём так, что каждое число встречается на всех n карточках ровно два раза. Доказать, что карточки можно разложить на столе так, что сверху окажутся все числа: 1, 2,..., n.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .