Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Пусть     где  p1, ..., ps – простые и  α1, ..., αs, β1, ..., βs ≥ 0.  Докажите равенства:

  а)  

  б)  

  в)  (a, b)[a, b] = ab.

Вниз   Решение


На сколько нулей оканчивается число 100!?

ВверхВниз   Решение


Докажите, что число    делится на 2k и не делится на 2k+1.

ВверхВниз   Решение


Найдите все двузначные числа, квадрат которых равен кубу суммы их цифр.

ВверхВниз   Решение


Автор: Белухов Н.

Дан треугольник ABC и такая точка F, что  ∠AFB = ∠BFC = ∠CFA.  Прямая, проходящая через F и перпендикулярная BC, пересекает медиану, проведённую из вершины A, в точке A1. Точки B1 и C1 определяются аналогично. Докажите, что A1, B1 и C1 являются тремя вершинами правильного шестиугольника, три другие вершины которого лежат на сторонах треугольника ABC.

ВверхВниз   Решение


Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78290

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9,10

Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .