Страница: 1 [Всего задач: 5]
Задача
78287
(#1)
|
|
Сложность: 3 Классы: 8,9,10
|
У края биллиарда, имеющего форму правильного 2n-угольника, стоит шар. Как надо пустить шар от борта, чтобы он, отразившись последовательно от всех бортов, вернулся в ту же точку? (При отражении углы падения и отражения равны.) Доказать, что при этом длина пути шара не зависит от выбора начальной точки.
Задача
78288
(#2)
|
|
Сложность: 4 Классы: 8,9
|
ABC – равнобедренный треугольник; AB = BC, BH – высота, M – середина стороны AB, K – точка пересечения BH с описанной окружностью треугольника BMC. Доказать, что BK = 3/2 R, где R – радиус описанной окружности треугольника ABC.
Задача
78289
(#3)
|
|
Сложность: 3+ Классы: 8,9
|
"Уголком" называется фигура, составленная из трёх квадратов со стороной
1 в виде буквы "Г".
Доказать, что прямоугольник размерами 1961×1963 нельзя разбить на уголки, а прямоугольник размерами 1963×1965 – можно.
Задача
78290
(#4)
|
|
Сложность: 2+ Классы: 8,9,10
|
Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число
– составное.
Задача
78291
(#5)
|
|
Сложность: 4+ Классы: 8,9,10
|
На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать
две, расстояние между которыми меньше 1. Доказать, что среди данных точек
найдутся 13, лежащие в круге радиуса 1.
Страница: 1 [Всего задач: 5]