ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам. Среди всех многоугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
На отрезке AC взята точка B и на отрезках AB,
BC, CA построены полуокружности S1, S2, S3 по одну сторону
от AC. D — такая точка на S3, что
BD На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки? На плоскости дано 25 точек, причем среди любых
трех из них найдутся две на расстоянии меньше 1. Докажите,
что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
Постройте четырехугольник ABCD, в который можно
вписать окружность, зная длины двух соседних сторон AB
и AD и углы при вершинах B и D.
По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков? В треугольнике ABC высота AM не меньше BC, а
высота BH не меньше AC. Найдите углы треугольника ABC.
Окружность S касается равных сторон AB и BC
равнобедренного треугольника ABC в точках P и K, а также
касается внутренним образом описанной окружности треугольника ABC.
Докажите, что середина отрезка PK является
центром вписанной окружности треугольника ABC.
Какую фигуру образует множество всех вершин равнобедренных треугольников, имеющих общее основание?
Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11. Через середину отрезка AB проведена прямая, перпендикулярная прямой AB. Докажите, что каждая точка этой прямой одинаково удалена от точек A и B. Какое наибольшее число точек самопересечения может иметь замкнутая 14-звенная ломаная, проходящая по линиям клетчатой бумаги так, что ни на какой линии не лежит более одного звена ломаной? |
Страница: 1 [Всего задач: 5]
Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других.
Какое наибольшее число точек самопересечения может иметь замкнутая 14-звенная ломаная, проходящая по линиям клетчатой бумаги так, что ни на какой линии не лежит более одного звена ломаной?
В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?
В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.
По аллее длиной 100 метров идут три человека со скоростями 1, 2 и 3 км/ч. Дойдя до конца аллеи, каждый из них поворачивает и идёт назад с той же скоростью. Доказать, что найдётся отрезок времени в 1 минуту, когда все трое будут идти в одном направлении.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке