ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78498  (#1)

Темы:   [ Площадь треугольника (прочее) ]
[ Векторы помогают решить задачу ]
[ Псевдоскалярное произведение ]
[ Формулы для площади треугольника ]
Сложность: 5-
Классы: 9,10,11

Дан произвольный треугольник ABC и точка X вне его. AM, BN, CQ — медианы треугольника ABC. Доказать, что площадь одного из треугольников XAM, XBN, XCQ равна сумме площадей двух других.
Прислать комментарий     Решение


Задача 78499  (#2)

Тема:   [ Подсчет двумя способами ]
Сложность: 4
Классы: 9,10

Какое наибольшее число точек самопересечения может иметь замкнутая 14-звенная ломаная, проходящая по линиям клетчатой бумаги так, что ни на какой линии не лежит более одного звена ломаной?
Прислать комментарий     Решение


Задача 78500  (#3)

Темы:   [ Правильные многоугольники ]
[ Раскладки и разбиения ]
[ Признаки подобия ]
Сложность: 4-
Классы: 9,10

В правильном десятиугольнике провели все диагонали. Сколько попарно неподобных треугольников имеется на этом рисунке?

Прислать комментарий     Решение

Задача 78501  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10

В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

Прислать комментарий     Решение

Задача 78497  (#5)

Темы:   [ Задачи на движение ]
[ Покрытия ]
Сложность: 4+
Классы: 8,9,10

По аллее длиной 100 метров идут три человека со скоростями 1, 2 и 3 км/ч. Дойдя до конца аллеи, каждый из них поворачивает и идёт назад с той же скоростью. Доказать, что найдётся отрезок времени в 1 минуту, когда все трое будут идти в одном направлении.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .