ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78511  (#1)

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 2+
Классы: 7,8

В треугольнике ABC высоты, опущенные на стороны AB и BC, не меньше этих сторон соответственно. Найти углы треугольника.
Прислать комментарий     Решение


Задача 78512  (#2)

Тема:   [ Признаки и свойства касательной ]
Сложность: 3
Классы: 7,8

На данной окружности выбраны диаметрально противоположные точки A и B и третья точка C. Касательная, проведённая к окружности в точке A, и прямая BC пересекаются в точке M. Доказать, что касательная, проведённая к окружности в точке C, делит пополам отрезок AM.
Прислать комментарий     Решение


Задача 78513  (#3)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.

Прислать комментарий     Решение

Задача 78514  (#4)

Темы:   [ Целочисленные решетки (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

На листе бумаги проведено 11 горизонтальных и 11 вертикальных прямых, точки пересечения которых называются узлами, звеном" мы будем называть отрезок прямой, соединяющий два соседних узла одной прямой. Какое наименьшее число звеньев надо стереть, чтобы после этого в каждом узле сходилось не более трёх звеньев?

Прислать комментарий     Решение

Задача 78515  (#5)

Темы:   [ Арифметика остатков (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 7,8,9

Последовательность a0, a1, a2, ... образована по закону:  a0 = a1 = 1,  an+1 = anan–1 + 1.  Доказать, что число a1964 не делится на 4.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .