Страница: 1 [Всего задач: 5]
Задача
78664
(#1)
|
|
Сложность: 4 Классы: 8,9,10
|
Из пункта A одновременно вылетают 100 самолетов (флагманский и 99
дополнительных). С полным баком горючего самолет может пролететь 1000 км. В полёте самолеты могут передавать друг другу горючее. Самолет, отдавший горючее другим, совершает планирующую посадку. Каким образом надо совершать перелёт, чтобы флагман пролетел возможно дальше?
Задача
78665
(#2)
|
|
Сложность: 4- Классы: 8,9,10
|
Двое играют в следующую игру: имеется две кучи конфет. Играющие делают ход по
очереди. Ход состоит в том, что играющий съедает одну из куч, а другую делит на
две (равные или неравные) части. Если он не может разделить кучу, так как там
всего одна конфета, то он её съедает и выигрывает. Вначале в кучах было 33 и
35 конфет. Кто выиграет, начинающий или его партнер, и как для этого надо
играть?
Задача
78666
(#3)
|
|
Сложность: 4- Классы: 9,10,11
|
Можно ли разбить все целые неотрицательные числа на 1968 непустых классов так, чтобы в каждом классе было хотя бы одно число и выполнялось бы следующее условие:
если число m получается из числа n вычёркиванием двух рядом стоящих цифр или одинаковых групп цифр, то и m, и n принадлежат одному классу (например, числа 7, 9339337, 93223393447, 932239447 принадлежат одному классу)?
Задача
78667
(#4)
|
|
Сложность: 3+ Классы: 11
|
По заданной последовательности положительных чисел q1,..., qn, ... строится последовательность многочленов следующим образом:
f0(x) = 1,
f1(x) = x,
...
fn+1(x) = (1 + qn)xfn(x) – qnfn–1(x).
Докажите, что все вещественные корни n-го многочлена заключены между –1 и
1.
Задача
78668
(#5)
|
|
Сложность: 5 Классы: 10,11
|
В пространство введены 4 попарно скрещивающиеся прямые,
l1,
l2,
l3,
l4,
причём никакие три из них не параллельны одной плоскости. Провести плоскость
P так, чтобы точки
A1,
A2,
A3,
A4 пересечения этих прямых с
P образовывали
параллелограмм. Сколько прямых
заметают центры таких параллелограммов?
Страница: 1 [Всего задач: 5]