ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

n точек расположены в вершинах выпуклого n-угольника. Внутри этого n-угольника отметили k точек. Оказалось, что любые три из n + k точек не лежат на одной прямой и являются вершинами равнобедренного треугольника. Чему может быть равно число k?

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 78779  (#1)

Темы:   [ Пространственные многоугольники ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 11

Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.
Прислать комментарий     Решение


Задача 78781  (#3)

Тема:   [ Рекуррентные соотношения ]
Сложность: 3+
Классы: 11

Про последовательность x1, x2, ..., xn, ... известно, что для любого n > 1 выполнено равенство 3xn - xn - 1 = n. Кроме того, известно, что | x1| < 1971. Вычислить x1971 с точностью до 0, 000001.
Прислать комментарий     Решение


Задача 78782  (#4)

Темы:   [ Выпуклые многоугольники ]
[ Вписанные и описанные окружности ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10

n точек расположены в вершинах выпуклого n-угольника. Внутри этого n-угольника отметили k точек. Оказалось, что любые три из n + k точек не лежат на одной прямой и являются вершинами равнобедренного треугольника. Чему может быть равно число k?
Прислать комментарий     Решение


Задача 78783  (#5)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Простые числа и их свойства ]
[ Деление с остатком ]
Сложность: 4
Классы: 9,10,11

Лежит кучка в 10 миллионов спичек. Двое играют в следующую игру. Ходят по очереди. За один ход играющий может взять из кучки спички в количестве pn, где p – простое число,  n = 0, 1, 2, 3, ...  (например, первый берёт 25 спичек, второй – 8, первый – 1, второй – 5, первый – 49 и т.д.). Выигрывает тот, кто берёт последнюю спичку. Кто выиграет при правильной игре?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .