ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Прямоугольный параллелепипед описан около единичной сферы. Найдите его площадь поверхности.


Вниз   Решение


Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты. Одна из монет фальшивая, причём неизвестно, легче она настоящих монет или тяжелее (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету? Решите ту же задачу в случаях, когда имеется 4 монеты и 9 монет.

ВверхВниз   Решение


Астрономический прожектор освещает октант (трёхгранный угол, у которого все плоские углы прямые). Прожектор помещён в центр куба. Можно ли его повернуть таким образом, чтобы он не освещал ни одной вершины куба?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79311  (#1)

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 11

Найти все положительные решения системы уравнений
   

Прислать комментарий     Решение

Задача 79312  (#2)

Темы:   [ Неравенства с площадями ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Пусть M'K'H' — треугольник с вершинами в точках пересечения трёх проведённых отрезков. Может ли площадь полученного треугольника быть больше 0,499 площади треугольника ABC?
Прислать комментарий     Решение


Задача 79313  (#3)

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Классические неравенства (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 10,11

Каковы первые четыре цифры числа  11 + 2² + 3³ + ... + 999999 + 10001000?

Прислать комментарий     Решение

Задача 79314  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Куб ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Теорема косинусов ]
Сложность: 4+
Классы: 10,11

Астрономический прожектор освещает октант (трёхгранный угол, у которого все плоские углы прямые). Прожектор помещён в центр куба. Можно ли его повернуть таким образом, чтобы он не освещал ни одной вершины куба?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .