ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли на плоскости расположить конечное число точек таким образом, чтобы у каждой точки было бы ровно три ближайших к ней точки?

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 79318  (#3)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8

Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?
Прислать комментарий     Решение


Задача 79319  (#4)

Темы:   [ Системы точек ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильные многоугольники ]
[ Гомотетия помогает решить задачу ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9,10

Можно ли на плоскости расположить конечное число точек таким образом, чтобы у каждой точки было бы ровно три ближайших к ней точки?

Прислать комментарий     Решение

Задача 79320  (#5)

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9

В клетках таблицы размером 10×20 расставлено 200 различных чисел. В каждой строчке отмечены два наибольших числа красным цветом, а в каждом столбце отмечены два наибольших числа синим цветом. Доказать, что не менее трёх чисел отмечены в таблице как красным, так и синим цветом.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .