|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Диагонали AC и BD параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие? Можно ли на плоскости расположить конечное число точек таким образом, чтобы у каждой точки было бы ровно три ближайших к ней точки? |
Страница: 1 [Всего задач: 3]
Можно ли на плоскости расположить конечное число точек таким образом, чтобы у каждой точки было бы ровно три ближайших к ней точки?
В клетках таблицы размером 10×20 расставлено 200 различных чисел. В каждой строчке отмечены два наибольших числа красным цветом, а в каждом столбце отмечены два наибольших числа синим цветом. Доказать, что не менее трёх чисел отмечены в таблице как красным, так и синим цветом.
Страница: 1 [Всего задач: 3] |
||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|