ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

О функции f(x) , заданной на всей действительной прямой, известно, что при любом a>1 функция f(x)+f(ax) непрерывна на всей прямой. Докажите, что f(x) также непрерывна на всей прямой.

Вниз   Решение


Последовательность натуральных чисел {xn} строится по следующему правилу:  x1 = 2,  xn+1 = [1,5xn].  Доказать, что в последовательности {xn} бесконечно много
  а) нечётных чисел;
  б) чётных чисел.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 79332

Темы:   [ Рекуррентные соотношения ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 10,11

Последовательность натуральных чисел {xn} строится по следующему правилу:  x1 = 2,  xn+1 = [1,5xn].  Доказать, что в последовательности {xn} бесконечно много
  а) нечётных чисел;
  б) чётных чисел.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .