|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Какой наибольший рациональный корень может иметь уравнение вида $ax$² + $bx + c$ = 0, где $a, b$ и $c$ – натуральные числа, не превосходящие 100? Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100. |
Страница: 1 [Всего задач: 2]
См. задачу 79385 а) и б).
Страница: 1 [Всего задач: 2] |
|||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|