Страница: 1 [Всего задач: 4]
Задача
79533
(#1)
|
|
Сложность: 4 Классы: 8,9,10
|
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади
которых выражаются целыми числами.
Докажите, что произведение этих чисел не может оканчиваться на 1988.
Задача
79534
(#2)
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что при простых pi ≥ 5, i = 1, 2, ..., 24, число делится нацело на 24.
Задача
79535
(#3)
|
|
Сложность: 3+ Классы: 10,11
|
На плоскости даны две перпендикулярные прямые. С помощью кронциркуля укажите на
плоскости три точки, являющиеся вершинами равностороннего треугольника.
Кронциркуль — это инструмент, похожий на циркуль, но на концах у него две
иголки. Он позволяет переносить одинаковые расстояния, но не позволяет рисовать
(процарапывать) окружности, дуги окружностей и делать засечки.
Задача
79536
(#4)
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть x и y – натуральные числа. Рассмотрим функцию
f(x, y) = ½ (x + y – 1)(x + y – 2) + y. Докажите, что множеством значений этой функции являются все натуральные числа, причём для любого натурального i = f(x, y) числа x и y определяются однозначно.
Страница: 1 [Всего задач: 4]