ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Фольклор

Выдающемуся бразильскому футболисту Роналдиньо Гаушо исполнится X лет в X² году.
А сколько лет ему исполнится в 2018 году, когда чемпионат мира пройдёт в России?

Вниз   Решение


Автор: Шноль Д.Э.

Разрежьте какой-нибудь квадрат на квадратики двух разных размеров так, чтобы маленьких было столько же, сколько и больших.

ВверхВниз   Решение


Для любых чисел a1 и a2, удовлетворяющих условиям  a1 ≥ 0,  a2 ≥ 0,  a1 + a2 = 1,  можно найти такие числа b1 и b2, что  b1 ≥ 0,  b2 ≥ 0,  b1 + b2 = 1,
(5/4a1)b1 + 3(5/4a2)b2 > 1.  Доказать.

ВверхВниз   Решение


Доказать, что при любых натуральных m и n число  10m + 1  не делится на  10n − 1.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 86476  (#19.1)

Темы:   [ Произведения и факториалы ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 7,8,9

Доказать, что при натуральном n число  nm + 1  будет составным хотя бы для одного натурального m.

Прислать комментарий     Решение

Задача 86477  (#19.2)

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Пусть p – простое число, отличное от 2 и 5. Доказать, что  p4 − 1  делится на 10.

Прислать комментарий     Решение

Задача 86478  (#19.3)

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2+
Классы: 7,8

Доказать, что при любых натуральных m и n число  10m + 1  не делится на  10n − 1.

Прислать комментарий     Решение

Задача 86479  (#19.4)

 [Делимость на 100.]
Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Доказать, что число  29 + 299  делится на 100.

Прислать комментарий     Решение

Задача 86480  (#19.5)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 7,8

Доказать, что числа  27x + 4  и  18x + 3  взаимно просты при любом натуральном x.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .