ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Книги/журналы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.
Петя может располагать три отрезка в пространстве произвольным образом.
После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так,
чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
Числа a, b, c таковы, что a²(b + c) = b²(a + c) = 2008 и a ≠ b. Найдите значение выражения c²(a + b). Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?
Докажите, что при
n
Fn + m = Fn - 1Fm + FnFm + 1.
Попробуйте доказать его двумя способами: при помощи метода математической индукции и при помощи интерпретации чисел Фибоначчи из задачи 3.109. Докажите также, что тождество Кассини (см. задачу 3.112) является частным случаем этого равенства. Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами. Определите, на какую наибольшую натуральную степень числа 2007 делится 2007! Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов. Уголком размера n×m , где m,n
Окружности с центрами O1 и O2 имеют общую хорду AB ,
Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам? |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 4556]
У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?
На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?
АРФА, БАНТ, ВОЛКОДАВ, ГГГГ, СОУС. Из этих пяти "слов" четыре составляют закономерность, а одно — лишнее. Попробуйте найти это лишнее слово. Интересно, что задача имеет пять решений, т.е. про каждое слово можно объяснить, почему именно оно лишнее, и какой закономерности подчиняются остальные четыре слова.
Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 4556]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке