Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Джукич Д.

Все стороны выпуклого пятиугольника равны, а все углы различны. Докажите, что максимальный и минимальный углы прилегают к одной стороне пятиугольника.

Вниз   Решение


Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если:
а) три отрезка имеют равные длины?
б) длины двух отрезков равны между собой и не равны длине третьего?

ВверхВниз   Решение


Числа a, b, c таковы, что  a²(b + c) = b²(a + c) = 2008  и  a ≠ b.  Найдите значение выражения  c²(a + b).

ВверхВниз   Решение


Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?

ВверхВниз   Решение


Докажите, что при n $ \geqslant$ 1 и m $ \geqslant$ 0 выполняется равенство

Fn + m = Fn - 1Fm + FnFm + 1.


Попробуйте доказать его двумя способами: при помощи метода математической индукции и при помощи интерпретации чисел Фибоначчи из задачи 3.109. Докажите также, что тождество Кассини (см. задачу 3.112) является частным случаем этого равенства.

ВверхВниз   Решение


Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
Верно ли, что её двадцатый член также является натуральным числом?

ВверхВниз   Решение


Определите, на какую наибольшую натуральную степень числа 2007 делится 2007!

ВверхВниз   Решение


Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.

ВверхВниз   Решение


Автор: Храмцов Д.

Уголком размера n×m , где m,n2 , называется фигура, получаемая из прямоугольника размера n×m клеток удалением прямоугольника размера (n-1)×(m-1) клеток. Два игрока по очереди делают ходы, заключающиеся в закрашивании в уголке произвольного ненулевого количества клеток, образующих прямоугольник или квадрат. Пропускать ход или красить одну клетку дважды нельзя. Проигрывает тот, после чьего хода все клетки уголка окажутся окрашенными. Кто из игроков победит при правильной игре?

ВверхВниз   Решение


Окружности с центрами O1 и O2 имеют общую хорду AB , AO1B = 120o . Отношение длины второй окружности к длине первой равно . Найдите угол AO2B .

ВверхВниз   Решение


Слово – любая конечная последовательность букв русского алфавита. Выясните, сколько различных слов можно составить из слов
  а) ВЕКТОР;
  б) ЛИНИЯ;
  в) ПАРАБОЛА;
  г) БИССЕКТРИСА;
  д) МАТЕМАТИКА.

ВверхВниз   Решение


На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 4556]      



Задача 87949

Тема:   [ Разрезания (прочее) ]
Сложность: 2-
Классы: 5,6,7

У двух человек было два квадратных торта. Каждый сделал на своём торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого  — четыре. Как это могло быть?
Прислать комментарий     Решение


Задача 87952

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Разрезания (прочее) ]
Сложность: 2-
Классы: 5,6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 87954

Темы:   [ Разрезания (прочее) ]
[ Инварианты ]
Сложность: 2-
Классы: 5,6,7

На какое максимальное число кусков можно разделить круглый блинчик при помощи трех прямолинейных разрезов?
Прислать комментарий     Решение


Задача 87966

Темы:   [ Математическая логика (прочее) ]
[ Ребусы ]
Сложность: 2-
Классы: 5,6,7

АРФА, БАНТ, ВОЛКОДАВ, ГГГГ, СОУС. Из этих пяти "слов" четыре составляют закономерность, а одно  — лишнее. Попробуйте найти это лишнее слово. Интересно, что задача имеет пять решений, т.е. про каждое слово можно объяснить, почему именно оно лишнее, и какой закономерности подчиняются остальные четыре слова.
Прислать комментарий     Решение


Задача 87981

Тема:   [ Десятичная система счисления ]
Сложность: 2-
Классы: 5,6,7

Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .