|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
год:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Диагонали AC и BD параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие? Можно ли на плоскости расположить конечное число точек таким образом, чтобы у каждой точки было бы ровно три ближайших к ней точки? В волейбольном турнире каждые две команды сыграли по одному матчу. Биссектрисы внутреннего и внешнего углов при вершине A треугольника ABC пересекают прямую BC в точках P и Q.
Чётными или нечётными будут сумма и произведение: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 97]
Чётными или нечётными будут сумма и произведение:
Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе?
Старый сапожник Карл сшил сапоги и послал своего сына Ганса на базар – продать их за 25 талеров. На базаре к мальчику подошли два инвалида (один без левой ноги, другой – без правой) и попросили продать им по сапогу. Ганс согласился и продал каждый сапог за 12,5 талеров.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 97] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|