ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На шахматной доске N×N стоят N² шашек. Можно ли их переставить так, чтобы любые две шашки, отстоявшие на ход коня, после перестановки отстояли друг от друга лишь на ход короля (то есть стояли рядом)? Рассмотрите два случая:
  а)  N = 3;
  б)  N = 8.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 98205

Темы:   [ Четырехугольники (построения) ]
[ Построение треугольников по различным элементам ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

Прислать комментарий     Решение

Задача 97823

Темы:   [ Раскраски ]
[ Принцип Дирихле (углы и длины) ]
[ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

Прислать комментарий     Решение

Задача 97833

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теорема Пифагора (прямая и обратная) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

а) Во всех клетках квадрата 20×20 стоят солдатики. Ваня называет число d, а Петя переставляет солдатиков так, чтобы каждый передвинулся на расстояние не меньше d (расстояние берётся между центрами старой и новой клеток). При каких d это возможно?
б) Эта же задача для квадрата 21×21.

Прислать комментарий     Решение

Задача 97834

Темы:   [ Параллельность прямых и плоскостей ]
[ Апофема пирамиды (тетраэдра) ]
[ Сфера, описанная около тетраэдра ]
Сложность: 4-
Классы: 10,11

Из вершин основания тетраэдра в боковых гранях провели высоты, а затем в каждой из боковых граней основания двух лежащих в ней высот соединили прямой. Докажите, что эти три прямые параллельны одной плоскости.

Прислать комментарий     Решение

Задача 97813

Темы:   [ Полуинварианты ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 4
Классы: 8,9

На шахматной доске N×N стоят N² шашек. Можно ли их переставить так, чтобы любые две шашки, отстоявшие на ход коня, после перестановки отстояли друг от друга лишь на ход короля (то есть стояли рядом)? Рассмотрите два случая:
  а)  N = 3;
  б)  N = 8.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .