|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D. |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
При каком натуральном K величина
На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?
Учитель продиктовал классу задание, которое каждый ученик выполнил в своей тетради. Вот это задание: Нарисуйте две концентрические окружности радиусов 1 и 10. К малой окружности проведите три касательные так, чтобы их точки пересечения A, B и C лежали внутри большой окружности. Измерьте площадь S треугольника ABC и площади SA, SB и SC трёх образовавшихся криволинейных треугольников с вершинами в точках A, B и C. Найдите SA + SB + SC – S. Докажите, что у всех учеников (если они правильно выполнили задание) получились одинаковые результаты.
В треугольнике ABC проведены высота AH и биссектриса BE. Известно, что угол BEA равен 45°. Докажите, что угол EHC равен 45°.
Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D.
Страница: << 1 2 3 4 5 >> [Всего задач: 23] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|