ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты. Даны две концентрические окружности Ω и ω. Хорда AD окружности Ω касается ω. Внутри меньшего сегмента AD круга с границей Ω взята произвольная точка P. Касательные из P к окружности ω пересекают большую дугу AD окружности Ω в точках B и C. Отрезки BD и AC пересекаются в точке Q. Докажите, что отрезок PQ делит отрезок AD на две равные части. Белая ладья преследует чёрного коня на доске 3×1969 клеток (они ходят по очереди по обычным правилам). Как должна играть ладья, чтобы взять коня? Первый ход делают белые. В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр? Имеется 57 деревянных правильных 57-угольников, прибитых к полу. Всю эту систему мы обтягиваем веревкой. Натянутая веревка будет ограничивать некоторый многоугольник. Доказать, что у него более 56 вершин. Периметр треугольника ABC равен 1. Окружность ω касается стороны BC, продолжения стороны AB в точке P и продолжения стороны AC в точке Q. Прямая, проходящая через середины AB и AC, пересекает описанную окружность треугольника APQ в точках X и Y. Найдите длину отрезка XY. Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами. Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия: |
Страница: 1 [Всего задач: 4]
Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
Докажите, что если K чётно, то числа от 1 до K – 1 можно выписать в таком порядке, что сумма никаких нескольких подряд стоящих чисел не будет делиться на K.
На плоскости дано N прямых (N > 1), никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие N, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.
а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке