Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Карточка матлото представляет собой таблицу 6×6 клеточек. Играющий отмечает 6 клеточек и отправляет карточку в конверте. После этого в газете публикуется шестёрка проигрышных клеточек. Докажите, что
  а) можно заполнить девять карточек так, чтобы среди них обязательно нашлась "выигрышная" карточка – такая, в которой не отмечена ни одна проигрышная клеточка;
  б) восьми карточек для этого недостаточно.

Вниз   Решение


Докажите тождество: 12 + 22 +...+ n2 = $\displaystyle {\textstyle\frac{1}{6}}$n(n + 1)(2n + 1).

ВверхВниз   Решение


Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

ВверхВниз   Решение


Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли
  а) хоть одна из четырёх его клеток целиком накрыта одним из этих треугольников;
  б) в один из этих треугольников можно поместить квадрат со стороной 1?

ВверхВниз   Решение


Имеется много карточек, на каждой из которых записано натуральное число от 1 до n. Известно, что сумма чисел на всех карточках равна nk, где k – целое число. Докажите, что карточки можно разложить на k групп так, чтобы в каждой группе сумма чисел, записанных на карточках, равнялась n!.

ВверхВниз   Решение


Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
  а) Докажите, что число её членов меньше 100.
  б) Приведите пример такой прогрессии с 72 членами.
  в) Докажите, что число членов всякой такой прогрессии не больше 72.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 98121  (#6)

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
[ Задачи с ограничениями ]
Сложность: 4
Классы: 9,10

Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
  а) Докажите, что число её членов меньше 100.
  б) Приведите пример такой прогрессии с 72 членами.
  в) Докажите, что число членов всякой такой прогрессии не больше 72.

Прислать комментарий     Решение

Задача 98111  (#7)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
[ Связность и разложение на связные компоненты ]
Сложность: 4+
Классы: 8,9

n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
  а) При каких n это возможно, если   m = 9?
  б) При каких n и m это возможно?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .