Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

Вниз   Решение


На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?

ВверхВниз   Решение


В треугольнике АВС угол В равен 120°,  АВ = 2ВС.  Серединный перпендикуляр к стороне АВ пересекает АС в точке D. Найдите отношение  AD : DC.

ВверхВниз   Решение


В основании прямой призмы лежит прямоугольный треугольник с катетами 4 и 1 . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы.


ВверхВниз   Решение


В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются непохожими, если они различаются не менее, чем по 51 признаку.
  а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
  б) А может ли быть ровно 50?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107989

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 9,10,11

При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа  A + B?

Прислать комментарий     Решение

Задача 107990

Темы:   [ Обход графов ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Дед барона К.Ф.И. фон Мюнхгаузена построил квадратный замок, разделил его на 9 квадратных залов и в центральном разместил арсенал. Отец барона разделил каждый из восьми оставшихся залов на 9 равных квадратных холлов и во всех центральных холлах устроил зимние сады. Сам барон разделил каждый из 64 свободных холлов на 9 равных квадратных комнат и в каждой из центральных комнат устроил бассейн, а остальные сделал жилыми. Барон хвастается, что ему удалось обойти все жилые комнаты, побывав в каждой по одному разу, и вернуться в исходную (в каждой стене между двумя соседними жилыми комнатами проделана дверь). Могут ли слова барона быть правдой?

Прислать комментарий     Решение

Задача 107994

Темы:   [ Наибольшая или наименьшая длина ]
[ Средняя линия треугольника ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9,10

На стороне AB треугольника ABC внешним образом построен квадрат с центром O. Точки M и N   середины сторон AC и BC соответственно, а длины этих сторон равны соответственно a и b. Найти максимум суммы  OM + ON,  когда угол ACB меняется.

Прислать комментарий     Решение

Задача 107992

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Принцип Дирихле (углы и длины) ]
[ Последовательности (прочее) ]
[ Поворот помогает решить задачу ]
[ Симметрия и инволютивные преобразования ]
Сложность: 5-
Классы: 9,10,11

Для каждой пары действительных чисел a и b рассмотрим последовательность чисел pn = [2{an + b}]. Любые k подряд идущих членов этой последовательности назовем словом. Верно ли, что любой упорядоченный набор из нулей и единиц длины k будет словом последовательности, заданной некоторыми a и b при k = 4; при k = 5?

Примечание: [c] - целая часть, {c} - дробная часть числа c.
Прислать комментарий     Решение


Задача 98184

Темы:   [ Сочетания и размещения ]
[ Подсчет двумя способами ]
[ Неравенство Коши ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 5-
Классы: 8,9,10

В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются непохожими, если они различаются не менее, чем по 51 признаку.
  а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
  б) А может ли быть ровно 50?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .