|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
а) Разбейте отрезок [0, 1] на чёрные и белые отрезки
так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам. б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995? В ботаническом справочнике каждое растение характеризуется 100 признаками
(каждый признак либо присутствует, либо отсутствует). Растения считаются
непохожими, если они различаются не менее, чем по 51 признаку.
|
Страница: 1 2 >> [Всего задач: 6]
При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа A + B?
Дед барона К.Ф.И. фон Мюнхгаузена построил квадратный замок, разделил его на 9 квадратных залов и в центральном разместил арсенал. Отец барона разделил каждый из восьми оставшихся залов на 9 равных квадратных холлов и во всех центральных холлах устроил зимние сады. Сам барон разделил каждый из 64 свободных холлов на 9 равных квадратных комнат и в каждой из центральных комнат устроил бассейн, а остальные сделал жилыми. Барон хвастается, что ему удалось обойти все жилые комнаты, побывав в каждой по одному разу, и вернуться в исходную (в каждой стене между двумя соседними жилыми комнатами проделана дверь). Могут ли слова барона быть правдой?
На стороне AB треугольника ABC внешним образом построен квадрат с центром O. Точки M и N середины сторон AC и BC соответственно, а длины этих сторон равны соответственно a и b. Найти максимум суммы OM + ON, когда угол ACB меняется.
Примечание: [c] - целая часть, {c} - дробная часть числа c.
В ботаническом справочнике каждое растение характеризуется 100 признаками
(каждый признак либо присутствует, либо отсутствует). Растения считаются
непохожими, если они различаются не менее, чем по 51 признаку.
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|