ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?

   Решение

Задачи

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 644]      



Задача 98662

Темы:   [ Задачи на смеси и концентрации ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 6,7

Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе.
Сколько человек в семье?

Прислать комментарий     Решение

Задача 102795

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8,9

Доказать, что каждое из чисел последовательности 11, 111, 1111, ... не является квадратом натурального числа.

Прислать комментарий     Решение

Задача 102808

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенство треугольника ]
Сложность: 3
Классы: 7,8

Расстояния до вершин квадрата. Могут ли расстояния от некоторой точки на плоскости до вершин некоторого квадрата быть равными 1, 4, 7 и 8?
Прислать комментарий     Решение


Задача 102811

Темы:   [ Четность и нечетность ]
[ Обратный ход ]
Сложность: 3
Классы: 7,8

Натуральное число можно умножать на 2 и произвольным образом переставлять в нем цифры (запрещается лишь ставить 0 на первое место).
Докажите, что превратить число 1 в число 811 с помощью таких операций невозможно.

Прислать комментарий     Решение

Задача 102812

Темы:   [ Уравнения в целых числах ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8

Найти все такие тройки простых чисел x, y, z, что  19x − yz = 1995.

Прислать комментарий     Решение

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .