|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Решите в натуральных числах уравнение xy = yx при x ≠ y. Разделить циркулем и линейкой отрезок на 6 равных частей, проведя не более 8 линий (прямых, окружностей). В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m? Сеть метро имеет на каждой линии не менее 4 станций, из них не более трёх пересадочных. Ни на какой пересадочной станции не скрещиваются более двух линий. Какое наибольшее число линий может иметь такая сеть, если с каждой станции на любую другую можно попасть, сделав не больше двух пересадок? |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 173]
Докажите справедливость следующих утверждений:
Докажите, что для любого натурального m существует число Фибоначчи Fn (n ≥ 1), кратное m.
Пусть первое число Фибоначчи, делящееся на m, есть Fk. Докажите, что m | Fn тогда и только тогда, когда k | n.
Докажите, что два соседних числа Фибоначчи Fn–1 и Fn (n ≥ 1) взаимно просты.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 173] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|