|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Решите в натуральных числах уравнение xy = yx при x ≠ y. Разделить циркулем и линейкой отрезок на 6 равных частей, проведя не более 8 линий (прямых, окружностей). В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m? Сеть метро имеет на каждой линии не менее 4 станций, из них не более трёх пересадочных. Ни на какой пересадочной станции не скрещиваются более двух линий. Какое наибольшее число линий может иметь такая сеть, если с каждой станции на любую другую можно попасть, сделав не больше двух пересадок? |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 173]
Докажите равенство (Fn, Fm) = F(m, n).
n = где все числа b2, ..., bm
равны 0 либо 1, причем среди этих чисел нет двух единиц
стоящих рядом, то есть
bkbk + 1 = 0
(2
n = (bk...b2)F.
Fn = где
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 173] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|