ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 27]      



Задача 109634  (#М1566)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Подсчет двумя способами ]
[ Классическая комбинаторика (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 5
Классы: 8,9,10

В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.
Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.

Прислать комментарий     Решение

Задача 109632  (#М1567)

Темы:   [ Две касательные, проведенные из одной точки ]
[ Три окружности одного радиуса ]
Сложность: 3+
Классы: 8,9



Центры O1 , O2 и O3 трех непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек O1 , O2 и O3 проведены касательные к данным окружностям так, как показано на рисунке. Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих отрезков.
Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .