Страница:
<< 1 2
3 4 >> [Всего задач: 16]
Доказать, что разносторонний треугольник нельзя разрезать на два равных
треугольника.
К двум окружностям, касающимся извне, проведены общие внешние касательные и
точки касания соединены между собой. Доказать, что в полученном четырёхугольнике
суммы противоположных сторон равны.
Даны 6 цифр: 0, 1, 2, 3, 4, 5. Найти сумму всех четырёхзначных чётных чисел,
которые можно написать этими цифрами (одна и та же цифра в числе может
повторяться).
Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали: AQ = AC/n+1.
|
|
Сложность: 3+ Классы: 7,8,9
|
Вершины A, B, C треугольника соединены с точками A1, B1, C1, лежащими на противоположных сторонах (не в вершинах).
Могут ли середины отрезков AA1, BB1, CC1 лежать на одной прямой?
Страница:
<< 1 2
3 4 >> [Всего задач: 16]