ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 76504

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

Доказать, что разносторонний треугольник нельзя разрезать на два равных треугольника.
Прислать комментарий     Решение


Задача 76505

Тема:   [ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.
Прислать комментарий     Решение


Задача 76510

Темы:   [ Десятичная система счисления ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

Даны 6 цифр: 0, 1, 2, 3, 4, 5. Найти сумму всех четырёхзначных чётных чисел, которые можно написать этими цифрами (одна и та же цифра в числе может повторяться).

Прислать комментарий     Решение

Задача 76512

Темы:   [ Параллелограммы (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

Прислать комментарий     Решение

Задача 32137

Тема:   [ Средняя линия треугольника ]
Сложность: 3+
Классы: 7,8,9

Вершины A, B, C треугольника соединены с точками A1, B1, C1, лежащими на противоположных сторонах (не в вершинах).
Могут ли середины отрезков AA1, BB1, CC1 лежать на одной прямой?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .