ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 78158

Темы:   [ Покрытия ]
[ Геометрические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10

Обозначим через a наибольшее число непересекающихся кругов диаметра 1, центры которых лежат внутри многоугольника M, через b — наименьшее число кругов радиуса 1, которыми можно покрыть весь многоугольник M. Какое число больше: a или b?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .