Страница: 1 [Всего задач: 5]
Задача
78684
(#1)
|
|
Сложность: 4+ Классы: 8,9,10
|
Внутри выпуклого многоугольника
M помещена окружность максимально возможного
радиуса
R (это значит, что внутри
M нельзя поместить окружность большего
радиуса). Известно, что внутри можно провернуть отрезок длины 1 на любой угол
(т.е. мы можем двигать единичный отрезок как твердый стержень по плоскости так,
чтобы он не вылезал за пределы многоугольника
M и при этом повернулся на
любой заданный угол). Докажите, что
R1/3.
Задача
78685
(#2)
|
|
Сложность: 3+ Классы: 10,11
|
В таблице A размером 10×10 написаны какие-то числа. Обозначим сумму всех чисел в первой строке через s1, во второй – через s2 и т.д. Аналогично сумму чисел в первом столбце обозначим через t1, во втором – t2 и т.д. Составлена новая таблица B размером 10×10, в неё вписаны числа следующим образом: в первой клетке первой строки пишется наименьшее из чисел s1 и t1, в третьей клетке пятой строки пишется
наименьшее из чисел s5 и t3, аналогично записана вся таблица. Оказалось, что можно так занумеровать клетки таблицы B числами от 1 до 100, что в клетке с k-м номером будет стоять число, меньшее или равное k. Какое максимальное значение может принимать при этих условиях сумма всех чисел таблицы A?
Задача
78686
(#3)
|
|
Сложность: 4+ Классы: 11
|
Рассматривается система уравнений:
Докажите, что при некоторых k такая система имеет решение.
Задача
78687
(#4)
|
|
Сложность: 4+ Классы: 8,9,10
|
Правильный треугольник
ABC разбит на
N выпуклых многоугольников так, что
каждая прямая пересекает не более 40 из них (мы говорим, что прямая
пересекает многоугольник, если они имеют общую точку, например, если прямая
проходит через вершину многоугольника). Может ли быть
N больше миллиона?
Задача
78688
(#5)
|
|
Сложность: 3+ Классы: 10,11
|
На поверхности кубика мелом отмечено 100 различных точек. Докажите, что можно
двумя различными способами поставить кубик на чёрный стол (причём в точности
на одно и то же место) так, чтобы отпечатки от мела на столе при этих способах были разными. (Если точка отмечена на ребре или в вершине, она тоже даёт отпечаток.)
Страница: 1 [Всего задач: 5]