ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 [Всего задач: 23]      



Задача 78756

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Полуинварианты ]
Сложность: 4+
Классы: 8,9,10

Квадратный лист бумаги разрезали по прямой на две части. Одну из полученных частей снова разрезали на две части, и так много раз. Какое наименьшее число разрезов необходимо, чтобы среди полученных частей могло оказаться ровно 100 двадцатиугольников?
Прислать комментарий     Решение


Задача 78761

Темы:   [ Деление с остатком ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5-
Классы: 10,11

Имеется натуральное число  n > 1970.  Возьмём остатки от деления числа 2n на 2, 3, 4, ..., n. Доказать, что сумма этих остатков больше 2n.

Прислать комментарий     Решение

Задача 78758

Темы:   [ Площадь сферы и ее частей ]
[ Описанные многогранники ]
Сложность: 6-
Классы: 10,11

Около сферы радиуса 10 описан некоторый 19-гранник. Доказать, что на его поверхности найдутся две точки, расстояние между которыми больше 21.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .