ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 3]      



Задача 78828  (#3)

Темы:   [ Обход графов ]
[ Ориентированные графы ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10

В городе Никитовка двустороннее движение. В течение двух лет в городе проходил ремонт всех дорог. Вследствие этого в первый год на некоторых дорогах было введено одностороннее движение. На следующий год на этих дорогах было восстановлено двустороннее движение, а на остальных дорогах введено одностороннее движение. Известно, что в каждый момент ремонта можно было проехать из любой точки города в любую другую. Доказать, что в Никитовке можно ввести одностороннее движение так, что из каждой точки города удастся проехать в любую другую точку.

Прислать комментарий     Решение

Задача 78829  (#4)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Подсчет двумя способами ]
[ Правило произведения ]
Сложность: 4
Классы: 7,8,9

Пусть K(x) равно числу таких несократимых дробей a/b, что  a < x  и  b < x  (a и b – натуральные числа). Например,  K(5/2) = 3  (дроби 1, 2, ½).
Вычислить сумму  K(100) + K(100/2) + K(100/3) + ... + K(100/99) + K(100/100).

Прислать комментарий     Решение

Задача 78830  (#5)

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4+
Классы: 8,9,10

На плоскости проведено 300 прямых, причём никакие две из них не параллельны и никакие три не пересекаются в одной точке. По этим прямым плоскость разрезана на куски. Доказать, что среди кусков найдётся не менее 100 треугольников.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .