Страница: 1 [Всего задач: 2]
Задача
79603
(#4)
|
|
Сложность: 4- Классы: 7,8,9
|
Совет из 2000 депутатов решил утвердить государственный бюджет, содержащий
200 статей расходов. Каждый депутат подготовил свой проект бюджета, в котором указал по каждой статье максимально допустимую, по его мнению, величину расходов, проследив за тем, чтобы общая сумма расходов не превысила заданную величину S. По каждой статье совет утверждает наибольшую величину расходов, которую согласны выделить не менее k депутатов. При каком наименьшем k можно гарантировать, что общая сумма утверждённых расходов не превысит S?
Задача
79604
(#5)
|
|
Сложность: 4- Классы: 8,9,10,11
|
На прямоугольном экране размером m×n, разбитом на единичные клетки, светятся более (m – 1)(n – 1) клеток. Если в каком-либо квадрате 2×2 не светятся три клетки, то через некоторое время погаснет и четвёртая. Докажите, что тем не менее на экране всегда будет светиться хотя бы одна клетка.
Страница: 1 [Всего задач: 2]