ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 98]      



Задача 98645  (#10.5)

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 6,7,8

Разбирается дело Брауна, Джонса и Смита. Один из них совершил преступление. В ходе следствия каждый из них сделал по два заявления. Браун: «Я не делал этого. Джонс не делал этого». Смит: «Я не делал этого. Это сделал Браун.» Джонс: «Браун не делал этого. Это сделал Смит.» Потом оказалось, что один из них дважды сказал правду, другой — дважды солгал, третий — раз сказал правду, раз солгал. Кто совершил преступление?
Прислать комментарий     Решение


Задача 98646  (#10.6)

 [Сейчас вылетит птичка]
Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 6,7

В фотоателье залетели 20 птиц – 8 скворцов, 7 трясогузок и 5 дятлов. Каждый раз, как только фотограф щелкнет затвором фотоаппарата, какая-то одна из птичек улетит (насовсем). Сколько кадров сможет сделать фотограф, чтобы быть уверенным: у него останется не меньше четырёх птиц одного вида, и не меньше трёх – другого?

Прислать комментарий     Решение

Задача 98647  (#10.7)

Темы:   [ Подсчет двумя способами ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы?
Прислать комментарий     Решение


Задача 98648  (#10.8)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6

Слоны, носороги, жирафы. Во всех зоопарках, где есть слоны и носороги, нет жирафов. Во всех зоопарках, где есть носороги и нет жирафов, есть слоны. Наконец, во всех зоопарках, где есть слоны и жирафы, есть и носороги. Может ли быть такой зоопарк, в котором есть слоны, но нет ни жирафов, ни носорогов?
Прислать комментарий     Решение


Задача 88166  (#11.1)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Четность и нечетность ]
[ Арифметика. Устный счет и т.п. ]
[ Обыкновенные дроби ]
Сложность: 2+
Классы: 6,7,8

Дети держат в руках флажки. Тех, у кого в обеих руках поровну флажков, в 5 раз меньше, чем тех, у кого не поровну. Когда каждый ребёнок переложил по одному флажку из одной руки в другую, тех, у кого в обеих руках поровну флажков, стало в 2 раза меньше, чем тех, у кого не поровну. Могло ли быть так, что в начале более чем у половины детей в одной руке было ровно на один флажок меньше, чем в другой?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .