Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 45]
В каждой клетке таблицы (n–2)×n (n > 2) записано целое число от 1 до n, причём в каждой строке все числа различны и в каждом столбце все числа различны. Докажите, что эту таблицу можно дополнить до квадрата n×n, записав в каждую новую клетку какое-нибудь целое число от 1 до n так, чтобы по-прежнему в каждой строке и в каждом столбце числа были различны.
Правильный (2n+1)-угольник разбили диагоналями на 2n – 1 треугольник. Докажите, что среди них по крайней мере три равнобедренных.
Саша выставляет на пустую шахматную доску ладьи: первую – куда захочет, а каждую следующую ставит так, чтобы она побила нечётное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить?
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли такие натуральные числа a1
< a2 < a3 < ... < a100, что НОК(a1, a2) > НОК(a2, a3) > ... > НОК(a99, a100)?
|
|
Сложность: 4- Классы: 9,10,11
|
Клетки шахматной доски занумерованы числами от 1 до 64 так, что соседние номера стоят в соседних (по стороне) клетках.
Какова наименьшая возможная сумма номеров на диагонали?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 45]