ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 381]      



Задача 64572

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Замощения костями домино и плитками ]
Сложность: 3
Классы: 5,6,7,8

Нарисуйте фигуру, которую можно разрезать на четыре фигурки, изображённые слева, а можно – на пять фигурок, изображенных справа. (Фигурки можно поворачивать.)

Прислать комментарий     Решение

Задача 64575

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 7,8

Два одинаковых прямоугольных треугольника из бумаги удалось положить один на другой так, как показано на рисунке (при этом вершина прямого угла одного попала на сторону другого). Докажите, что заштрихованный треугольник равносторонний.

Прислать комментарий     Решение

Задача 65100

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3
Классы: 5,6,7

Через двор проходят четыре пересекающиеся тропинки (см. план).

Посадите четыре яблони так, чтобы по обе стороны от каждой тропинки было поровну яблонь.

Прислать комментарий     Решение

Задача 65102

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Математик с пятью детьми зашёл в пиццерию.
  Маша: Мне с помидорами и чтоб без колбасы.
  Ваня: А мне с грибами.
  Даша: Я буду без помидоров.
  Никита: А я с помидорами. Но без грибов!
  Игорь: И я без грибов. Зато с колбасой!
  Папа: Да, с такими привередами одной пиццей явно не обойдёшься...
Сможет ли математик заказать две пиццы и угостить каждого рeбенка такой, какую тот просил, или все же придется три пиццы заказывать?

Прислать комментарий     Решение

Задача 65596

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 3
Классы: 5,6,7

У Незнайки есть пять карточек с цифрами: 1, 2, 3, 4 и 5. Помогите ему составить из этих карточек два числа – трёхзначное и двузначное – так, чтобы первое число делилось на второе.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .