ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 103836

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Обратный ход ]
Сложность: 2
Классы: 7,8

На прямой отметили несколько точек. После этого между каждыми двумя соседними точками отметили ещё по точке. Такое ''уплотнение'' повторили ещё дважды (всего 3 раза). В результате на прямой оказалось отмечено 113 точек. Сколько точек было отмечено первоначально?

Прислать комментарий     Решение


Задача 103837

Темы:   [ Арифметические действия. Числовые тождества ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2
Классы: 6,7,8

Укажите пять целых положительных чисел, сумма которых равна 20, а произведение — 420.

Прислать комментарий     Решение


Задача 103843

Тема:   [ Разрезания, разбиения, покрытия и замощения ]
Сложность: 2
Классы: 7

Разрежьте фигуру (по границам клеток) на три равные (одинаковые по форме и величине) части.

Прислать комментарий     Решение


Задача 103842

Темы:   [ Обыкновенные дроби ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 6,7

Числитель и знаменатель дроби – натуральные числа, дающие в сумме 101. Известно, что дробь не превосходит ⅓.
Укажите наибольшее возможное значение такой дроби.

Прислать комментарий     Решение

Задача 103838

Тема:   [ Раскраски ]
Сложность: 3
Классы: 7,8,9

Квадрат 4×4 разделён на 16 клеток. Раскрасьте эти клетки в чёрный и белый цвета так, чтобы у каждой чёрной клетки было три белых соседа, а у каждой белой клетки был ровно один чёрный сосед. (Соседними считаются клетки, имеющие общую сторону.)

Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .