Страница:
<< 1 2
3 4 5 >> [Всего задач: 23]
|
|
Сложность: 3 Классы: 8,9,10
|
От двух кусков сплавов (с различным содержанием свинца) массой в 6 и 12 кг отрезали по куску равной массы. Каждый из отрезанных кусков сплавили с остатком другого куска, после чего процентное содержание свинца в обоих сплавах стало одинаковым. Каковы массы каждого из отрезанных кусков?
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике провести прямую, параллельную одной из сторон, так, чтобы площадь отсечённого треугольника равнялась 1/k площади данного треугольника (k – натуральное число), а оставшуюся часть треугольника разделить прямыми на p равновеликих частей. (Предполагается, что у нас есть отрезок единичной длины.)
На дуге AB есть произвольная точка M. Из середины K отрезка MB опущен перпендикуляр KP на прямую MA.
Доказать, что все прямые PK проходят через одну точку.
|
|
Сложность: 3+ Классы: 8,9,10
|
Дано четыре положительных числа a, p, c, k, произведение которых
равно 1. Доказать, что a² + p² + c² + k² + ap + ac + pc + ak + pk + ck ≥ 10.
|
|
Сложность: 3+ Классы: 10,11
|
Среди комплексных чисел p , удовлетворяющих условию |p – 25i| ≤ 15, найти число с наименьшим аргументом.
Страница:
<< 1 2
3 4 5 >> [Всего задач: 23]