ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 7526]      



Задача 53743

Темы:   [ Признаки подобия ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

Прислать комментарий     Решение

Задача 53842

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Против большей стороны лежит больший угол ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В равнобедренной трапеции ABCD основания  AD = 12,  BC = 6,  высота равна 4. Диагональ AC делит угол BAD трапеции на две части. Какая из них больше?

Прислать комментарий     Решение

Задача 53881

Тема:   [ Замечательное свойство трапеции ]
Сложность: 3-
Классы: 8,9

Через точку D, взятую на стороне AB треугольника ABC, проведена прямая, параллельная AC и пересекающая сторону BC в точке E.
Докажите, что прямые AE, CD и медиана, проведённая из вершины B, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 53882

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если  AB = 3,  BC = 10,  CD = 4,  AD = 12.

Прислать комментарий     Решение

Задача 53902

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На продолжениях гипотенузы AB прямоугольного треугольника ABC за точки A и B соответственно взяты точки K и M, причём  AK = AC  и  BM = BC.  Найдите угол MCK.

Прислать комментарий     Решение

Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .