Страница:
<< 1 2 [Всего задач: 8]
Задача
109658
(#97.5.9.6)
|
|
Сложность: 4 Классы: 7,8,9
|
В классе 33 человека. У каждого ученика спросили, сколько
у него в классе тезок и сколько однофамильцев (включая родственников).
Оказалось, что среди названных чисел встретились все целые от 0 до 10
включительно. Докажите, что в классе есть два ученика с одинаковыми именем
и фамилией.
Задача
108173
(#97.5.9.7)
|
|
Сложность: 4 Классы: 8,9
|
Окружность, вписанная в треугольник
ABC касается
его сторон
AB ,
BC и
CA в точках
M ,
N и
K
соответственно. Прямая, проходящая через вершину
A
и параллельная
NK , пересекает прямую
MN в точке
D . Прямая, проходящая через вершину
A и параллельная
MN , пересекает прямую
NK в точке
E . Докажите, что
прямая
DE содержит среднюю линию треугольника
ABC .
Задача
109660
(#97.5.9.8)
|
|
Сложность: 5- Классы: 8,9,10
|
В клетках таблицы 10×10 расставлены числа 1, 2, 3, ..., 100 так, что сумма любых двух соседних чисел не превосходит S.
Найдите наименьшее возможное значение S. (Числа называются соседними, если они стоят в клетках, имеющих общую сторону.)
Страница:
<< 1 2 [Всего задач: 8]