ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 111040

Темы:   [ Делимость чисел. Общие свойства ]
[ Квадратные уравнения. Теорема Виета ]
[ Уравнения в целых числах ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие натуральные  (a, b),  что a2 делится на натуральное число  2ab2b3 + 1.

Прислать комментарий     Решение

Задача 111043

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Классические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Арифметическая прогрессия ]
Сложность: 4+
Классы: 9,10,11

Пусть  $x_1 \le \dots \le x_n$.  Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.

Прислать комментарий     Решение

Задача 111039

Темы:   [ Объединение, пересечение и разность множеств ]
[ Сочетания и размещения ]
Сложность: 4+
Классы: 9,10,11

Дано 101-элементное подмножество A множества  S = {1, 2, ..., 1000000}.
Докажите, что для некоторых  t1, ..., t100  из S множества   Aj = {x + tj | xA;  j = 1, ..., 100}   попарно не пересекаются.

Прислать комментарий     Решение

Задача 110772

Темы:   [ Неравенство Коши ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 5-
Классы: 9,10,11

Определите наименьшее действительное число M, при котором неравенство   |ab(a² – b²) + bc(b² – c²) + ca(c² – a²)| ≤ M(a² + b² + c²)²   выполняется для любых действительных чисел a, b, c.

Прислать комментарий     Решение

Задача 110750

Темы:   [ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
[ Четность и нечетность ]
Сложность: 5
Классы: 8,9,10,11

Автор: Астахов В.

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников кликой, если все они дружат между собой. Их число называется размером клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .