Страница:
<< 1 2
3 >> [Всего задач: 12]
|
|
Сложность: 3+ Классы: 7,8,9
|
У подводного царя служат осьминоги с шестью, семью
или восемью ногами. Те, у кого 7 ног, всегда лгут, а у кого 6 или
8 ног, всегда говорят правду. Встретились четыре осьминога. Синий
сказал: "Вместе у нас 28 ног", зеленый: "Вместе у нас
27 ног", желтый: "Вместе у нас 26 ног", красный: "Вместе у
нас 25 ног". У кого сколько ног?
|
|
Сложность: 3+ Классы: 6,7,8,9
|
Если у осьминога четное число ног, он всегда говорит правду. Если
нечетное, то он всегда лжет. Однажды зеленый осьминог сказал
темно-синему:
- У меня 8 ног. А у тебя только 6.
- Это у меня 8 ног, - обиделся темно-синий. - А у тебя всего 7.
- У темно-синего действительно 8 ног, - поддержал фиолетовый и
похвастался: - А вот у меня целых 9!
- Ни у кого из вас не 8 ног, - вступил в разговор полосатый
осьминог. - Только у меня 8 ног!
У кого из осьминогов было ровно 8 ног?
|
|
Сложность: 4- Классы: 6,7,8,9,10
|
а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды,
пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные
сундуки, дать точный ответ на этот вопрос?
б) А если сундуков было восемь, а Скупой рыцарь мог разложить поровну
монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?
|
|
Сложность: 4- Классы: 6,7,8,9
|
Скупой рыцарь хранит золотые монеты в 77 сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну по этим двум сундукам. Потом он заметил, что если открыть любые 3, или любые 4, ..., или любые 76 сундуков, то тоже можно так переложить лежащие в них монеты, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга не успел проверить, можно ли разложить все
монеты поровну по всем 77 сундукам. Можно ли, не заглядывая в сундуки, дать точный ответ на этот вопрос?
|
|
Сложность: 4 Классы: 6,7,8,9
|
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка A на плане) до своего отеля (точка B). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет.
Страница:
<< 1 2
3 >> [Всего задач: 12]